

RD74LVC2G07

Dual Buffers / Drivers with Open Drain

REJ03D0751-0100 Rev.1.00 Oct 30, 2006

Description

The RD74LVC2G07 has Dual buffers / drives with open drain outputs in a 6-pin package. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

Features

• The basic gate function is lined up as Renesas uni logic series.

• Supply voltage range: 1.65 to 5.5 V

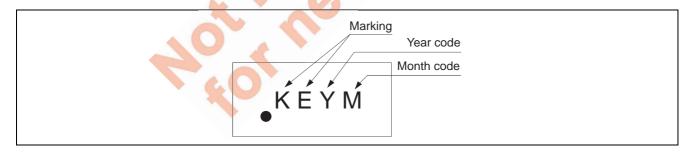
• Operating temperature range: -40 to +85°C

• All inputs: V_{IH} (Max.) = 5.5 V (@V_{CC} = 0 V to 5.5 V)

• All outputs: V_O (Max.) = 5.5 V (@V_{CC} = 0 V)

• Output current: $\pm 4 \text{ mA } (@V_{CC} = 1.65 \text{ V})$

 $\pm 8 \text{ mA } (@V_{CC} = 2.3 \text{ V})$


 $\pm 24 \text{ mA } (@V_{CC} = 3.0 \text{ V})$

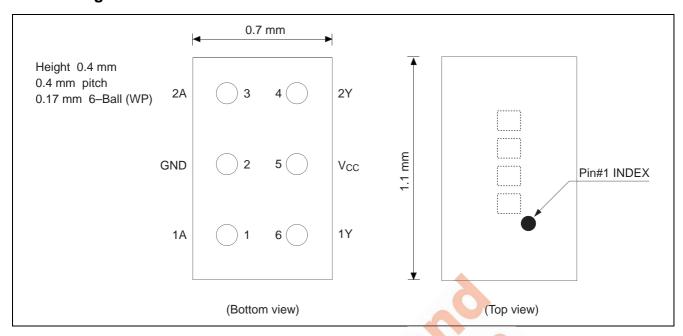
 $\pm 32 \text{ mA } (@V_{CC} = 4.5 \text{ V})$

• Ordering Information

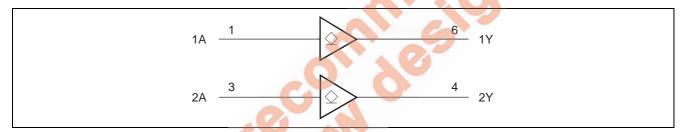
Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
RD74LVC2G07WPE	WCSP-6pin	SXBG0006LA-A (TBS-6BV)	WP	E (3,000 pcs/reel)

Article Indication

Function Table


Input A	Output Y
L	L
Н	Z

H: High level


L: Low level

Z: High impedance

Pin Arrangement

Logic Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	Vcc	-0.5 to 6.5	V	
Input voltage range *1	VI	-0.5 to 6.5	V	
Output voltage range *1, 2	Vo	-0.5 to V_{CC} +0.5	V	Output : L
Output voltage range	VO	-0.5 to 6.5	v	V _{CC} : OFF or Output : Z
Input clamp current	lık	– 50	mA	V ₁ < 0
Output clamp current	I _{OK}	– 50	mA	V _O < 0
Continuous output current	Io	±50	mA	$V_{\rm O} = 0$ to $V_{\rm CC}$
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±100	mA	
Package Thermal impedance	θ_{ja}	123	°C/W	WP
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 5.5 V maximum.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V _{CC}	1.65	5.5	V	
Input voltage range	Vı	0	5.5	V	
Output voltage range	Vo	0	V _{CC}	V	
		_	4		V _{CC} = 1.65 V
	I _{OL}	_	8		V _{CC} = 2.3 V
Output current		_	16	mA	V _{CC} = 3.0 V
		_	24		V _{CC} = 3.0 V
		_	32		V _{CC} = 4.5 V
		0	20		V _{CC} = 1.65 to 1.95 V,
Input transition rise or fall rate	Δt / Δν	U	20	ns / V	2.3 to 2.7 V
Input transition rise or fall rate	Δι / Δν	0	10	115 / V	V _{CC} = 3.0 to 3.6 V
		0	5		V _{CC} = 4.5 to 5.5 V
Operating free-air temperature	Ta	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristics

Ta = -40 to $85^{\circ}C$

Item	Symbol	V _{CC} (V)	Min	Тур	Max	Unit	Test condition
		1.65 to 1.95	V _{CC} ×0.65	4	-		
	\/	2.3 to 2.7	1.7	(A)		5	
	V _{IH}	3.0 to 3.6	2.0				
Input voltage		4.5 to 5.5	V _{CC} ×0.7			V	
Input voltage		1.65 to 1.95		1	V _{CC} ×0.35	V	
	V _{IL}	2.3 to 2.7	2		0.7		
	V IL	3.0 to 3.6	C =		0.8		
		4.5 to 5.5	-	_	V _{CC} ×0.3		
		Min to Max	1	 	0.1		$I_{OL} = 100 \mu\text{A}$
		1.65	-	_	0.45		$I_{OL} = 4 \text{ mA}$
Output voltage	V _{OL}	2.3		_	0.3	V	$I_{OL} = 8 \text{ mA}$
Output voltage		3.0			0.4	V	I _{OL} = 16 mA
					0.55		$I_{OL} = 24 \text{ mA}$
		4.5			0.55		$I_{OL} = 32 \text{ mA}$
Input current	I _{IN}	0 to 5.5			±5	μΑ	$V_{IN} = 5.5 \text{ V or GND}$
Off state output current	l _{OZ}	5.5			10	μΑ	$V_O = 5.5 \text{ V or GND}$
	I _{CC}	1.65 to 5.5			10		$V_{IN} = V_{CC}$ or GND,
Quiescent	ICC	1.03 to 3.3			10	μΑ	$I_{O} = 0$
supply current	ΔI_{CC}	3 to 5.5	_	_	500	μπ	One input at V _{CC} -0.6 V,
	۵،(ر				000		Other input at V _{CC} or GND
Output leakage current	I _{OFF}	0	_	_	±10	μΑ	V_{IN} or $V_O = 0$ to 5.5 V
Input capacitance	C_{IN}	3.3	_	3.5	—	pF	$V_{IN} = V_{CC}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

 $V_{CC}=1.8\pm0.15~V$

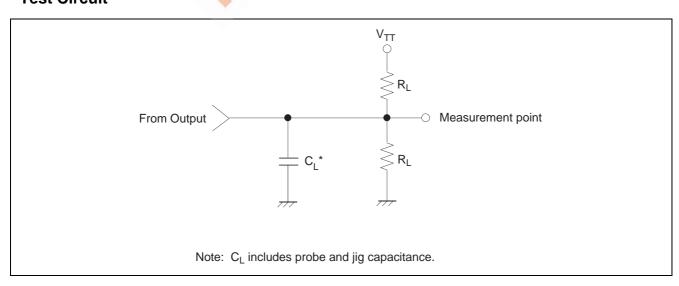
Item	Symbol Ta = -40 to 85°0		to 85°C	Unit	Test Conditions	FROM	ТО
itein	Syllibol	Min	Max	Ollit	rest Conditions	(Input)	(Output)
Propagation delay time	t _{ZL} t _{LZ}	2.4	8.3	ns	$C_L = 30 \text{ pF},$ $R_L = 1.0 \text{ k}\Omega$	A	Y

 $V_{CC}=2.5\pm0.2~V$

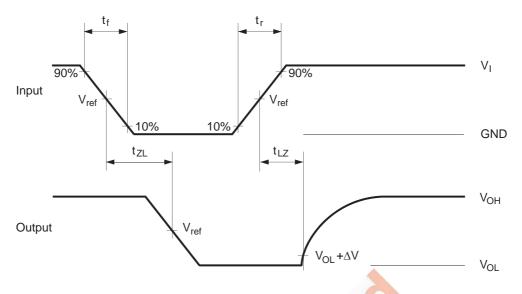
Item	Symbol	Ta = -40 to 85°C		Unit	Test Conditions	FROM	ТО
item	Syllibol	Min	Max	Onn	rest Conditions	(Input)	(Output)
Propagation delay time	t _{ZL} t _{LZ}	1.0	5.5	ns	$C_L = 30 \text{ pF},$ $R_L = 500 \Omega$	А	Υ

 $V_{CC}=3.3\pm0.3~V$

ltem	Symbol	Ta = -40 to		Unit	Test Conditions	FROM	ТО
iteiii	Syllibol	Min	Max	Oilit	rest Conditions	(Input)	(Output)
Propagation delay time	t _{ZL} t _{LZ}	1.5	4.2	ns	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	А	Y


 $V_{CC} = 5.0 \pm 0.5 \text{ V}$

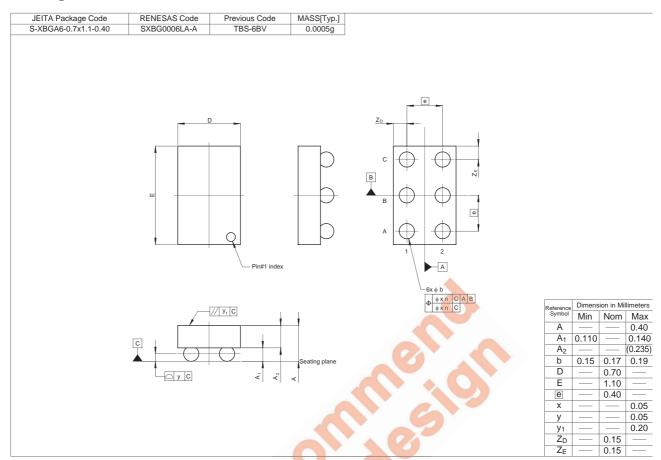
Item	Symbol	Ta = -40 to 85°C		Unit	Test Conditions	FROM	ТО
item	Syllibol	Min	Max	Onit	rest Conditions	(Input) (C	(Output)
Propagation delay time	t _{ZL}	1.0	3.5	ns –	$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	А	Υ


Operating Characteristics

Item	Symbol	V _{cc} (V)	Ta = 25°C			Unit	Test Conditions
	Symbol	VCC (V)	Min	Тур	Max	Oilit	rest conditions
Power dissipation capacitance	C _{PD}	1.8	6) -	16	_		f = 10 MHz
		2.5	_	16	_	pF	
		3.3	_	16	_		
		5.0	_	18	_		

Test Circuit

Waveforms



V _{CC} (V)	Inputs		Vref	CL	RL	AV	V	
*66 (**)	V _I	t _r / t _f	VIGI	5	N _L	Δν	V _{TT}	
1.8±0.15	V_{CC}	≤ 2 ns	V _{CC} /2	30 pF	1.0 kΩ	0.15 V	$V_{CC} \times 2$	
2.5±0.2	V_{CC}	≤ 2 ns	V _{CC} /2	30 pF	500 Ω	0.15 V	$V_{CC} \times 2$	
3.3±0.3	3 V	≤ 2.5 ns	1.5 V	50 pF	500 Ω	0.3 V	6 V	
5.0±0.5	V _{CC}	≤ 2.5 ns	V _{CC} /2	50 pF	500 Ω	0.3 V	V _{CC} ×2	

Notes: 1. Input waveform: PRR \leq 10 MHz, Zo = 50 Ω .

2. The output are measured one at a time with one transition per measurement.

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to the date this document in the such and the procedure of the date this document. In the such and the procedure of the

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510